• DocumentCode
    2014686
  • Title

    The optimization of genetic algorithm control parameters

  • Author

    Minle, Wang ; Xiaoguang, Gao

  • Author_Institution
    Second Artillery Eng. Inst., Xi´´an, China
  • Volume
    3
  • fYear
    2002
  • fDate
    2002
  • Firstpage
    2504
  • Abstract
    In the paper, methods of optimizing genetic algorithm control parameters are presented, including the method of adjusting crossover probability and mutation probability, the dynamic convergence rule and the method of determining the optimal population size. All the methods can be applied to enhancing genetic algorithm running efficiency and preventing premature convergence.
  • Keywords
    convergence; genetic algorithms; probability; control parameters optimization; crossover probability; dynamic convergence rule; genetic algorithm; mutation probability; optimal population size; running efficiency; Automatic control; Automation; Convergence; Genetic algorithms; Genetic engineering; Genetic mutations; Intelligent control; Optimal control; Optimization methods; Size control;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Intelligent Control and Automation, 2002. Proceedings of the 4th World Congress on
  • Print_ISBN
    0-7803-7268-9
  • Type

    conf

  • DOI
    10.1109/WCICA.2002.1021545
  • Filename
    1021545