DocumentCode :
2016896
Title :
Max-weight scheduling in networks with heavy-tailed traffic
Author :
Markakis, Mihalis G. ; Modiano, Eytan H. ; Tsitsiklis, John N.
Author_Institution :
Lab. for Inf. & Decision Syst., Massachusetts Inst. of Technol., Cambridge, MA, USA
fYear :
2012
fDate :
25-30 March 2012
Firstpage :
2318
Lastpage :
2326
Abstract :
We consider the problem of packet scheduling in a single-hop network with a mix of heavy-tailed and light-tailed traffic, and analyze the impact of heavy-tailed traffic on the performance of Max-Weight scheduling. As a performance metric we use the delay stability of traffic flows: a traffic flow is delay stable if its expected steady-state delay is finite, and delay unstable otherwise. First, we show that a heavy-tailed traffic flow is delay unstable under any scheduling policy. Then, we focus on the celebrated Max-Weight scheduling policy, and show that a light-tailed flow that conflicts with a heavy-tailed flow is also delay unstable. This is true irrespective of the rate or the tail distribution of the light-tailed flow, or other scheduling constraints in the network. Surprisingly, we show that a light-tailed flow can be delay unstable, even when it does not conflict with heavy-tailed traffic. Furthermore, delay stability in this case may depend on the rate of the light-tailed flow. Finally, we turn our attention to the class of Max-Weight-α scheduling policies; we show that if the α-parameters are chosen suitably, then the sum of the α-moments of the steady-state queue lengths is finite. We provide an explicit upper bound for the latter quantity, from which we derive results related to the delay stability of traffic flows, and the scaling of moments of steady-state queue lengths with traffic intensity.
Keywords :
delays; queueing theory; radio networks; scheduling; telecommunication traffic; delay stability; heavy tailed traffic; light tailed traffic; max weight scheduling; packet scheduling; performance metric; scheduling constraints; single hop network; steady state delay; steady state queue lengths; tail distribution; traffic flows; traffic intensity; Delay; Limiting; Queueing analysis; Schedules; Scheduling; Steady-state; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
INFOCOM, 2012 Proceedings IEEE
Conference_Location :
Orlando, FL
ISSN :
0743-166X
Print_ISBN :
978-1-4673-0773-4
Type :
conf
DOI :
10.1109/INFCOM.2012.6195619
Filename :
6195619
Link To Document :
بازگشت