DocumentCode :
2017599
Title :
Multichannel blind deconvolution of non-minimum phase systems using information backpropagation
Author :
Zhang, L.-Q. ; Cichocki, A. ; Amari, S.
Author_Institution :
RIKEN, Inst. of Phys. & Chem. Res., Saitama, Japan
Volume :
1
fYear :
1999
fDate :
1999
Firstpage :
210
Abstract :
We present a novel method-filter decomposition approach, for multichannel blind deconvolution of non-minimum phase systems. In earlier work we developed an efficient natural gradient algorithm for causal FIR filters. In this paper we further study the natural gradient method for noncausal filters. We decompose the doubly finite filters into a product of two filters, a noncausal FIR filter and a causal FIR filter. The natural gradient algorithm is employed to train the causal FIR filter, and a novel information backpropagation algorithm is developed for training the noncausal FIR filter. Simulations are given to illustrate the effectiveness and validity of the algorithm
Keywords :
FIR filters; backpropagation; deconvolution; learning (artificial intelligence); causal FIR filter; doubly finite filters; information backpropagation; method-filter decomposition approach; multichannel blind deconvolution; natural gradient algorithm; noncausal FIR filter; nonminimum phase systems; simulations; training; Backpropagation algorithms; Brain modeling; Deconvolution; Delay estimation; Finite impulse response filter; Gradient methods; Image enhancement; Information filtering; Information filters; Information systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Information Processing, 1999. Proceedings. ICONIP '99. 6th International Conference on
Conference_Location :
Perth, WA
Print_ISBN :
0-7803-5871-6
Type :
conf
DOI :
10.1109/ICONIP.1999.843988
Filename :
843988
Link To Document :
بازگشت