DocumentCode :
2020680
Title :
An algorithm for the dynamic inference of hidden Markov models (DIHMM)
Author :
Lockwood, Philip ; Blanchet, Marc
Author_Institution :
Matra Communication, Bois D´´Arcy, France
Volume :
2
fYear :
1993
fDate :
27-30 April 1993
Firstpage :
251
Abstract :
The DIHMM algorithm performs a robust estimation of the HMM topology and parameters. It allows a better control of the speech variability within each state of the HMM, yielding enhanced estimates. The DIHMM parameters (number of states, structure of the Gaussian mixture density functions, transition matrix) are obtained from the training data via probabilistic grammatical inference techniques welded in a Viterbi-like training framework. Experimental results on various databases indicate a global improvement of the recognition rates in adverse environments; the results averaged on three databases show an increase of 12.8% on raw data and 2.4% when using NSS (nonlinear spectral subtraction).<>
Keywords :
hidden Markov models; inference mechanisms; learning (artificial intelligence); parameter estimation; speech recognition; DIHMM algorithm; Gaussian mixture density functions; HMM topology; Viterbi-like training framework; adverse environments; databases; dynamic inference of hidden Markov models; nonlinear spectral subtraction; probabilistic grammatical inference techniques; recognition rates; speech variability; transition matrix;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1993. ICASSP-93., 1993 IEEE International Conference on
Conference_Location :
Minneapolis, MN, USA
ISSN :
1520-6149
Print_ISBN :
0-7803-7402-9
Type :
conf
DOI :
10.1109/ICASSP.1993.319282
Filename :
319282
Link To Document :
بازگشت