DocumentCode :
2021265
Title :
α-optimality evaluation in H identification of low-order uncertainty models
Author :
Giarre, L. ; Malan, S. ; Milanese, M.
Author_Institution :
Dipt. di Autom. e Inf., Politecnico di Torino, Italy
Volume :
1
fYear :
1997
fDate :
10-12 Dec 1997
Firstpage :
175
Abstract :
Set membership (SM) H identification is investigated, aimed to estimate a low order approximate model and its identification error, without requiring the selection of a-priori basis for the model class. An α-optimal algorithm is determined using time domain data and assuming l bounded measurement errors and exponentially stable systems. The algorithm presented is proven to be strongly convergent
Keywords :
Banach spaces; H optimisation; discrete time systems; error analysis; identification; linear systems; time-domain analysis; uncertain systems; Banach space; H identification; discrete time systems; exponentially stable systems; linear systems; low-order uncertainty models; measurement errors; optimisation; set membership; time domain data; Control design; Ear; Finite impulse response filter; Frequency selective surfaces; Q measurement; Transfer functions; Upper bound;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1997., Proceedings of the 36th IEEE Conference on
Conference_Location :
San Diego, CA
ISSN :
0191-2216
Print_ISBN :
0-7803-4187-2
Type :
conf
DOI :
10.1109/CDC.1997.650610
Filename :
650610
Link To Document :
بازگشت