DocumentCode :
2021717
Title :
Characterization of machine learning benchmarking data sets
Author :
Al-mashouq, Khalid ; Nawaz, Zaygham
Author_Institution :
Dept. of Electr. Eng., King Saud Univ., Riyadh, Saudi Arabia
Volume :
5
fYear :
2001
fDate :
2001
Firstpage :
3415
Abstract :
There is large number of public data sets for benchmarking tests of machine learning algorithms. Here we propose some parameters to characterize these data sets. We evaluate the proposed parameters for five commonly used data sets. In addition, we show how these parameters can be used in predicting the proper network model before training. This increases the speed in building a hybrid network such as the "general" recursive branching network
Keywords :
learning (artificial intelligence); software performance evaluation; benclunarking; hybrid network; machine learning; public data sets; recursive branching network; Artificial intelligence; Benchmark testing; Electronic equipment testing; Equations; Machine learning; Machine learning algorithms; Multi-layer neural network; Neural networks; Predictive models; System testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Systems, Man, and Cybernetics, 2001 IEEE International Conference on
Conference_Location :
Tucson, AZ
ISSN :
1062-922X
Print_ISBN :
0-7803-7087-2
Type :
conf
DOI :
10.1109/ICSMC.2001.972047
Filename :
972047
Link To Document :
بازگشت