• DocumentCode
    2022020
  • Title

    An EM Based Algorithm for Skew Detection

  • Author

    Egozi, A. ; Dinstein, Itshak

  • Author_Institution
    Ben-Gurion Univ. of the Negev, Beer-Sheva
  • Volume
    1
  • fYear
    2007
  • fDate
    23-26 Sept. 2007
  • Firstpage
    277
  • Lastpage
    281
  • Abstract
    We present a a statistical approach to skew detection, where the textual features of a document image are modeled as a mixture of straight lines in Gaussian noise. The EM algorithm is used to estimate the parameters of the mixture model and the skew angle estimate is extracted from the estimated parameters. Experiments prove that our method has some advantages over other existing methods in terms of accuracy and efficiency.
  • Keywords
    Gaussian noise; document image processing; expectation-maximisation algorithm; parameter estimation; Gaussian noise; document image textual feature; expectation maximization algorithm; parameter estimation; skew angle estimate; skew detection; Algorithm design and analysis; Character recognition; Clustering algorithms; Detection algorithms; Digital images; Gaussian noise; Least squares methods; Maximum likelihood estimation; Nearest neighbor searches; Parameter estimation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Document Analysis and Recognition, 2007. ICDAR 2007. Ninth International Conference on
  • Conference_Location
    Parana
  • ISSN
    1520-5363
  • Print_ISBN
    978-0-7695-2822-9
  • Type

    conf

  • DOI
    10.1109/ICDAR.2007.4378719
  • Filename
    4378719