DocumentCode :
2024528
Title :
Using Exponential Mixture Models for Suboptimal Distributed Data Fusion
Author :
Julier, Simon J. ; Bailey, Tim ; Uhlmann, Jeffrey K.
Author_Institution :
Department of Computer Science, University College London, Malet Place, London WC1E 6BT, UK. S.Julier@cs.ucl.ac.uk
fYear :
2006
fDate :
13-15 Sept. 2006
Firstpage :
160
Lastpage :
163
Abstract :
In this paper we investigate the use of Exponential Mixture Densities (EMDs) as suboptimal update rules for distributed data fusion. We show that EMDs have a pointwise bound "from below" on the minimum value of the probability distribution. However, the distributions are not bounded from above and thus can be interpreted as a fusion operation.
Keywords :
Computer science; Data engineering; Educational institutions; History; Network topology; Robots; Robustness; Sensor fusion; State estimation; Yield estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Nonlinear Statistical Signal Processing Workshop, 2006 IEEE
Conference_Location :
Cambridge, UK
Print_ISBN :
978-1-4244-0581-7
Electronic_ISBN :
978-1-4244-0581-7
Type :
conf
DOI :
10.1109/NSSPW.2006.4378844
Filename :
4378844
Link To Document :
بازگشت