DocumentCode :
2024882
Title :
Improving the Biological Relevance of Biclustering for Microarray Data in Using Ensemble Methods
Author :
Hanczar, Blaise ; Nadif, Mohamed
Author_Institution :
LIPADE, Univ. Paris Descartes, Paris, France
fYear :
2011
fDate :
Aug. 29 2011-Sept. 2 2011
Firstpage :
413
Lastpage :
417
Abstract :
Biclustering is become undoubtedly a current tool for micro array data analysis. Its objective is to identify a set of biclusters, i.e. sub matrices of the original data matrix, presenting a particular pattern. A large number of biclustering methods have already been proposed for gene expression data. Based on ensemble methods, w e propose a new approach improving the performance of all existing biclustering algorithms. Further, we show that the ensemble biclustering can be seen as a problem of binary triclustering and propose an algorithm to solve it. The results on three public micro array datasets show that the ensemble approach produces better biclusters than single approach.
Keywords :
biology computing; data analysis; matrix algebra; pattern clustering; biclustering methods; binary triclustering; biological relevance; data matrix; ensemble methods; gene expression data; microarray data analysis; public micro array datasets; Bagging; Bioinformatics; Biological system modeling; Cancer; Gene expression; Lungs; Biclustering; ensemble method; gene expression;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Database and Expert Systems Applications (DEXA), 2011 22nd International Workshop on
Conference_Location :
Toulouse
ISSN :
1529-4188
Print_ISBN :
978-1-4577-0982-1
Type :
conf
DOI :
10.1109/DEXA.2011.44
Filename :
6059852
Link To Document :
بازگشت