DocumentCode :
2024916
Title :
Irreducible Markov Chain Monte Carlo Schemes for Partially Observed Diffusions
Author :
Kalogeropoulos, Konstantinos ; Roberts, Gareth ; Dellaportas, Petros
fYear :
2006
fDate :
13-15 Sept. 2006
Firstpage :
216
Lastpage :
219
Abstract :
This paper presents a Markov chain Monte Carlo algorithm suitable for a class of partially observed non-linear diffusions. This class is of high practical interest; it includes for instance stochastic volatility models. We use data augmentation, treating the unobserved paths as missing data. However, unless these paths are transformed, the algorithm becomes reducible. We circumvent the problem by introducing appropriate reparametrisations of the likelihood that can be used to construct irreducible data augmentation schemes.
Keywords :
Approximation error; Biological system modeling; Biology; Differential equations; Diffusion processes; Finance; Fuel economy; Monte Carlo methods; Physics; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Nonlinear Statistical Signal Processing Workshop, 2006 IEEE
Conference_Location :
Cambridge, UK
Print_ISBN :
978-1-4244-0581-7
Electronic_ISBN :
978-1-4244-0581-7
Type :
conf
DOI :
10.1109/NSSPW.2006.4378858
Filename :
4378858
Link To Document :
بازگشت