DocumentCode :
2026008
Title :
Perfect Codes over Lipschitz Integers
Author :
Martinez, C. ; Stafford, E. ; Beivide, R. ; Gabidulin, E.
Author_Institution :
Univ. de Cantabria, Santander
fYear :
2007
fDate :
24-29 June 2007
Firstpage :
1366
Lastpage :
1370
Abstract :
Cayley graphs over quotients of the quaternion integers are going to be used to define a new metric over four dimensional lattices. We will consider perfect 1-error correcting codes according to this metric space. We will show that, in some cases, these lattices can be represented as two-dimensional constellations, which allow us to state a relation between the Lee metric and this new Lipschitz metric.
Keywords :
error correction codes; graph theory; Cayley graphs; Lipschitz integers; error correcting codes; perfect codes; Algebra; Arithmetic; Constellation diagram; Error correction codes; Extraterrestrial measurements; Graph theory; Lattices; Physics; Quaternions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2007. ISIT 2007. IEEE International Symposium on
Conference_Location :
Nice
Print_ISBN :
978-1-4244-1397-3
Type :
conf
DOI :
10.1109/ISIT.2007.4557413
Filename :
4557413
Link To Document :
بازگشت