DocumentCode :
2026111
Title :
Decoding cognitive brain states
Author :
Porbadnigk, Anne K. ; Treder, Matthias Sebastian ; Fazli, Siamac ; Tangermann, M. ; Vidaurre, C. ; Haufe, Stefan ; Curio, Gabriel ; Blankertz, Benjamin ; Muller, Klaus-Robert
Author_Institution :
Machine Learning Group, Berlin Inst. of Technol. (TU Berlin), Berlin, Germany
fYear :
2013
fDate :
18-20 Feb. 2013
Firstpage :
16
Lastpage :
18
Abstract :
The last years have seen a rise in interest in using BCI methodology for investigating non-medical questions beyond the purpose of communication and control. This abstract first provides a short introduction to BCI challenges from a machine learning perspective. The remaining sections present selected applications of BCI discussing in particular the use of EEG in combination with BCI methods for investigating how signal quality is processed on a sensory and cognitive level.
Keywords :
brain-computer interfaces; cognition; electroencephalography; learning (artificial intelligence); medical signal processing; BCI methodology; EEG; brain-computer interface; cognitive brain state decoding; cognitive level; electroencephalography; machine learning perspective; nonmedical question; sensory level; signal quality; Abstracts; Brain-computer interfaces; Degradation; Electroencephalography; Monitoring; Noise; Real-time systems; Applied Cognitive Neuroscience; Brain Computer Interfaces; Machine Learning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Brain-Computer Interface (BCI), 2013 International Winter Workshop on
Conference_Location :
Gangwo
Print_ISBN :
978-1-4673-5973-3
Type :
conf
DOI :
10.1109/IWW-BCI.2013.6506613
Filename :
6506613
Link To Document :
بازگشت