DocumentCode :
2026384
Title :
Deconvolution of sparse spike trains accounting for wavelet phase shifts and colored noise
Author :
Champagnat, F. ; Idier, J. ; Demoment, G.
Author_Institution :
Lab. des Signaux et Systemes, Ecole Superieure d´´Electricite, Gif-sur-Yvette, France
Volume :
3
fYear :
1993
fDate :
27-30 April 1993
Firstpage :
452
Abstract :
The problem of the restoration of spiky sequences when the usual convolution model is corrupted by nonstationary wavelet phase-shifts is addressed. To this end, an extended convolution model driven by a Bernoulli-Gaussian (BG)-like process is introduced. This setting lends itself to easy extension of algorithms designed for BG deconvolution. A comparison of practical results obtained with this new method and BG deconvolution is provided. Numerical experiments indicate an increased robustness compared with standard BG methods.<>
Keywords :
signal processing; wavelet transforms; Bernoulli-Gaussian deconvolution; algorithms; colored noise; extended convolution model; restoration of spiky sequences; robustness; sparse spike trains; wavelet phase shifts;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1993. ICASSP-93., 1993 IEEE International Conference on
Conference_Location :
Minneapolis, MN, USA
ISSN :
1520-6149
Print_ISBN :
0-7803-7402-9
Type :
conf
DOI :
10.1109/ICASSP.1993.319532
Filename :
319532
Link To Document :
بازگشت