Title :
Color Image Denoising via Sparse 3D Collaborative Filtering with Grouping Constraint in Luminance-Chrominance Space
Author :
Dabov, Kostadin ; Foi, Alessandro ; Katkovnik, Vladimir ; Egiazarian, Karen
Author_Institution :
Tampere Univ. of Technol., Tampere
fDate :
Sept. 16 2007-Oct. 19 2007
Abstract :
We propose an effective color image denoising method that exploits filtering in highly sparse local 3D transform domain in each channel of a luminance-chrominance color space. For each image block in each channel, a 3D array is formed by stacking together blocks similar to it, a process that we call "grouping". The high similarity between grouped blocks in each 3D array enables a highly sparse representation of the true signal in a 3D transform domain and thus a subsequent shrinkage of the transform spectra results in effective noise attenuation. The peculiarity of the proposed method is the application of a "grouping constraint" on the chrominances by reusing exactly the same grouping as for the luminance. The results demonstrate the effectiveness of the proposed grouping constraint and show that the developed denoising algorithm achieves state-of-the-art performance in terms of both peak signal-to-noise ratio and visual quality.
Keywords :
brightness; filtering theory; image denoising; color image denoising; grouping constraint; luminance-chrominance color space; sparse 3D collaborative filtering; Collaboration; Color; Filtering; Iron; Noise reduction; adaptive grouping; block-matching; color image denoising; shrinkage;
Conference_Titel :
Image Processing, 2007. ICIP 2007. IEEE International Conference on
Conference_Location :
San Antonio, TX
Print_ISBN :
978-1-4244-1437-6
Electronic_ISBN :
1522-4880
DOI :
10.1109/ICIP.2007.4378954