DocumentCode :
2028154
Title :
A statistical study of a regularized method for long auto-regressive spectral estimation
Author :
Giovannelli, Jean-François ; Demoment, Guy
Author_Institution :
Lab. des Signaux et Syst., Gif-sur-Yvette, France
Volume :
4
fYear :
1993
fDate :
27-30 April 1993
Firstpage :
137
Abstract :
The authors address the problem of power spectral density estimation of time series with auto-regressive (AR) models when only a short span of data is available for analysis. The AR coefficients are estimated through a regularized method proposed by G. Kitagawa and W. Gersch (1985). An experimental study of this method and a comparison with the classical least squares (LS) method are outlined. The principles of the statistical study and computation results are presented.<>
Keywords :
parameter estimation; signal processing; spectral analysis; statistical analysis; time series; long auto-regressive spectral estimation; power spectral density; regularized method; statistical study;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1993. ICASSP-93., 1993 IEEE International Conference on
Conference_Location :
Minneapolis, MN, USA
ISSN :
1520-6149
Print_ISBN :
0-7803-7402-9
Type :
conf
DOI :
10.1109/ICASSP.1993.319613
Filename :
319613
Link To Document :
بازگشت