• DocumentCode
    2028488
  • Title

    Information theoretic criteria for non-Gaussian ARMA order determination and parameter estimation

  • Author

    Giannakis, Georgios B. ; Shamsunder, Sanyogita

  • Author_Institution
    Dept. of Electr. Eng., Virginia Univ., Charlottesville, VA, USA
  • Volume
    4
  • fYear
    1993
  • fDate
    27-30 April 1993
  • Firstpage
    196
  • Abstract
    The problem of determining the orders and parameters of autoregressive moving average (ARMA) processes with an unknown but non-Gaussian probability density function is addressed. Asymptotically optimal, information theoretic criteria are developed based on higher-order statistics of the observed processes. The proposed algorithms rely upon sample cumulants, or polyspectra, and allow non-minimum phase and non-causal models unlike the conventional second-order correlation based methods. Unlike the linear rank-based cumulant methods, the nonlinear information theoretic type methods do not require subjective thresholding and yield strongly consistent estimators for the ARMA orders as well as the parameters. Simulation examples illustrate the feasibility of the theory.<>
  • Keywords
    information theory; parameter estimation; statistical analysis; ARMA order determination; algorithms; autoregressive moving average; feasibility; higher-order statistics; information theoretic criteria; non-Gaussian probability density function; parameter estimation; polyspectra; sample cumulants;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech, and Signal Processing, 1993. ICASSP-93., 1993 IEEE International Conference on
  • Conference_Location
    Minneapolis, MN, USA
  • ISSN
    1520-6149
  • Print_ISBN
    0-7803-7402-9
  • Type

    conf

  • DOI
    10.1109/ICASSP.1993.319628
  • Filename
    319628