DocumentCode :
2028490
Title :
Fundamental Matrix Estimation Without Prior Match
Author :
Noury, Nicolas ; Sur, Frédéric ; Berger, Marie-Odile
Author_Institution :
INPL/LORIA, Vandceuvre-les-Nancy
Volume :
1
fYear :
2007
fDate :
Sept. 16 2007-Oct. 19 2007
Abstract :
This paper presents a probabilistic framework for computing correspondences and fundamental matrix in the structure from motion problem. Inspired by Moisan and Stival [1], we suggest using an a contrario model, which is a good answer to threshold problems in the robust filtering context. Contrary to most existing algorithms where perceptual correspondence setting and geometry evaluation are independent steps, the proposed algorithm is an all-in-one approach. We show that it is robust to repeated patterns which are usually difficult to unambiguously match and thus raise many problems in the fundamental matrix estimation.
Keywords :
estimation theory; filtering theory; image matching; image motion analysis; matrix algebra; probability; all-in-one approach; contrario model; fundamental matrix estimation; local patch image similarities; motion problem; probabilistic framework; robust filtering context; Cameras; Context modeling; Filtering; Geometry; Layout; Motion analysis; Motion estimation; Pattern matching; Robustness; Streaming media; Fundamental matrix; probabilistic model; repeated patterns;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 2007. ICIP 2007. IEEE International Conference on
Conference_Location :
San Antonio, TX
ISSN :
1522-4880
Print_ISBN :
978-1-4244-1437-6
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2007.4379004
Filename :
4379004
Link To Document :
بازگشت