Title :
Towards the Integration of Drive Control Loop Electronics of the JPL/Boeing Gyroscope within an Autonomous Robust Custom-Reconfigurable Platform
Author :
Stefatos, E.F. ; Arslan, T. ; Keymeulen, D. ; Ferguson, I.
Author_Institution :
Sch. of Eng. & Electron., Edinburgh Univ.
Abstract :
This paper presents an autonomous architecture for the implementation of the JPL/Boeing gyroscope. The central point of the architecture is a unified reconfigurable fabric, which integrates two custom especially tailored reconfigurable units. The former fabric enables the reconfiguration of integer based computations, whereas the later deals with those requiring fractional accuracy. The architecture employs a number of other techniques such as primitive operators and a hybrid evolutionary strategy in order to allow the real-time adaptation of high quality circuits with low power consumption and high degree of fault-tolerance. Simulation results prove that our proposed architecture is able to adapt, in the presence of single-hard-errors, the functionality of high-order finite-impulse-response filters and proportional-integral controllers very efficiently in terms of speed, accuracy and hardware utilization. Power analysis demonstrates the near ASIC performance of our architecture
Keywords :
FIR filters; PI control; aerospace control; gyroscopes; micromechanical devices; reconfigurable architectures; ASIC; JPL-Boeing gyroscope; autonomous robust custom-reconfigurable platform; drive control loop electronics; finite-impulse-respnse filter; power analysis; proportional-integral controller; single-hard error; Circuit simulation; Computational modeling; Computer architecture; Energy consumption; Fabrics; Fault tolerance; Filters; Gyroscopes; Pi control; Robust control;
Conference_Titel :
Adaptive Hardware and Systems, 2006. AHS 2006. First NASA/ESA Conference on
Conference_Location :
Istanbul
Print_ISBN :
0-7695-2614-4
DOI :
10.1109/AHS.2006.75