DocumentCode :
2028682
Title :
Autonomous Hyperspectral Target Detection with Quasi-Stationarity Violation at Background Boundaries
Author :
Schaum, A.
Author_Institution :
Naval Res. Lab., Washington, DC
fYear :
2006
fDate :
11-13 Oct. 2006
Firstpage :
16
Lastpage :
16
Abstract :
Operational real time hyperspectral reconnaissance systems adaptively estimate multivariate background statistics. Parameter values derived from these estimates feed autonomous onboard detection systems. However, inadequate adaptation occurs whenever an airborne sensor encounters a physical boundary between spectrally distinct regions. The transition area generates excessive false alarms, because standard detection algorithms rely on quasi- stationary models of background statistics. Here we describe a two-mode stochastic mixture model aimed at solving the boundary problem. It exploits deployed signal processing modules to solve a generalized eigenvalue problem, making a threshold test for targets computationally feasible.
Keywords :
eigenvalues and eigenfunctions; geophysical signal processing; object detection; sensors; adaptively estimate multivariate background statistics; airborne sensor; autonomous hyperspectral target detection; background boundaries; generalized eigenvalue problem; operational real time hyperspectral reconnaissance systems; quasi-stationarity violation; two-mode stochastic mixture model; Detection algorithms; Eigenvalues and eigenfunctions; Feeds; Hyperspectral sensors; Object detection; Real time systems; Reconnaissance; Signal processing algorithms; Statistics; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Applied Imagery and Pattern Recognition Workshop, 2006. AIPR 2006. 35th IEEE
Conference_Location :
Washington, DC
ISSN :
1550-5219
Print_ISBN :
0-7695-2739-6
Electronic_ISBN :
1550-5219
Type :
conf
DOI :
10.1109/AIPR.2006.18
Filename :
4133958
Link To Document :
بازگشت