DocumentCode :
203
Title :
Semantic Annotation of Satellite Images Using Author–Genre–Topic Model
Author :
Wang Luo ; Hongliang Li ; Guanghui Liu ; Liaoyuan Zeng
Author_Institution :
Univ. of Electron. Sci. & Technol. of China, Chengdu, China
Volume :
52
Issue :
2
fYear :
2014
fDate :
Feb. 2014
Firstpage :
1356
Lastpage :
1368
Abstract :
In this paper, we propose a novel hierarchical generative model, named author-genre-topic model (AGTM), to perform satellite image annotation. Different from the existing author-topic model in which each author and topic are associated with the multinomial distributions over topics and words, in AGTM, each genre, author, and topic are associated with the multinomial distributions over authors, topics, and words, respectively. The bias of the distribution of the authors with respect to the topics can be rectified by incorporating the distribution of the genres with respect to the authors. Therefore, the classification accuracy of documents is improved when the information of genre is introduced. By representing the images with several visual words, the AGTM can be used for satellite image annotation. The labels of classes and scenes of the images correspond to the authors and the genres of the documents, respectively. The labels of classes and scenes of test images can be estimated, and the accuracy of satellite image annotation is improved when the information of scenes is introduced in the training images. Experimental results demonstrate the good performance of the proposed method.
Keywords :
feature extraction; geophysical image processing; image representation; AGTM; author-genre-topic model; genre information; hierarchical generative model; multinomial distributions; satellite image annotation; semantic annotation; training images; Descriptor; generative model; image annotation; satellite image;
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
Publisher :
ieee
ISSN :
0196-2892
Type :
jour
DOI :
10.1109/TGRS.2013.2250978
Filename :
6542727
Link To Document :
بازگشت