• DocumentCode
    20303
  • Title

    Scene Dynamics Estimation for Parameter Adjustment of Gaussian Mixture Models

  • Author

    Rui Zhang ; Weiguo Gong ; Grzeda, Victor ; Yaworski, Andrew ; Greenspan, Marshall

  • Author_Institution
    Key Lab. for Optoelectron. Technol. & Syst. of Minist. of Educ., Chongqing Univ., Chongqing, China
  • Volume
    21
  • Issue
    9
  • fYear
    2014
  • fDate
    Sept. 2014
  • Firstpage
    1130
  • Lastpage
    1134
  • Abstract
    The scene dynamics can provide useful statistical information for adjusting parameters of Gaussian mixture models (GMMs) in video surveillance. The contributions of this paper are twofold. First, an adaptive scene dynamics estimation approach is proposed. Second, we propose a scene-dynamics based method to adjust two types of GMMs´ parameters, i.e., the learning rates and number of Gaussian components. For the learning rates, the scene dynamics are integrated into different kinds of pixel-type feedback schemes to control different kinds of learning rates. Experimental results demonstrate that the proposed method can effectively improve the performance of GMMs in surveillance scenes with complex dynamic backgrounds.
  • Keywords
    Gaussian processes; feedback; mixture models; video surveillance; GMM; Gaussian mixture models; adaptive scene dynamics estimation approach; parameter adjustment; pixel-type feedback schemes; statistical information; video surveillance scene dynamics estimation; Cameras; Computational modeling; Estimation; Gaussian mixture model; Image edge detection; Noise; Background modeling; Gaussian mixture models; parameter adjustment; scene dynamics; video surveillance;
  • fLanguage
    English
  • Journal_Title
    Signal Processing Letters, IEEE
  • Publisher
    ieee
  • ISSN
    1070-9908
  • Type

    jour

  • DOI
    10.1109/LSP.2014.2326916
  • Filename
    6821265