DocumentCode :
2030739
Title :
A hierarchical Bayesian deconvolution with positivity constraints
Author :
Satoh, T. ; Matsui, A. ; Hirohata, T. ; Matsumoto, T.
Author_Institution :
Dept. of Electr., Electron. & Comput. Eng., Waseda Univ., Tokyo, Japan
Volume :
3
fYear :
1999
fDate :
1999
Firstpage :
1230
Abstract :
A class of deconvolution problems with positivity constraints is formulated in terms of a hierarchical Bayesian framework. A deconvolution algorithm is proposed and applied to a specific real world problem: estimation of relaxation dynamics of GaN photoluminescence (S. Nakamura et al., 1994)
Keywords :
Bayes methods; deconvolution; optical computing; photoluminescence; GaN photoluminescence estimation; deconvolution algorithm; deconvolution problems; hierarchical Bayesian deconvolution; hierarchical Bayesian framework; positivity constraints; real world problem; relaxation dynamics; Bayesian methods; Convolution; Deconvolution; Gallium nitride; Integral equations; Integrated circuit noise; Kernel; Parameter estimation; Photoluminescence; Probability distribution;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Information Processing, 1999. Proceedings. ICONIP '99. 6th International Conference on
Conference_Location :
Perth, WA
Print_ISBN :
0-7803-5871-6
Type :
conf
DOI :
10.1109/ICONIP.1999.844718
Filename :
844718
Link To Document :
بازگشت