DocumentCode :
2031112
Title :
Quaternary Convolutional Codes from Linear Block Codes over Galois Rings
Author :
Sole, P. ; Sison, V.
Author_Institution :
CNRS, Sophia Antipolis
fYear :
2007
fDate :
24-29 June 2007
Firstpage :
2641
Lastpage :
2645
Abstract :
From a linear block code B over the Galois ring GR(4, to) with a k x n generator matrix and minimum Hamming distance d, a rate-k/n convolutional code over the ring Z4 with squared Euclidean free distance at least 2d and a non-recursive encoder with memory at most to m-1 is constructed. When the generator matrix of B is systematic, the convolutional encoder is systematic, basic, non-catastrophic and minimal. Long codes constructed in this manner are shown to satisfy a Gilbert-Varshamov bound.
Keywords :
Galois fields; Hamming codes; block codes; convolutional codes; linear codes; Galois rings; Gilbert-Varshamov bound; encoder; generator matrix; linear block codes; minimum Hamming distance; quaternary convolutional code; squared Euclidean free distance; Block codes; Concrete; Convolutional codes; Educational institutions; Galois fields; Hamming distance; Modules (abstract algebra); Physics; Polynomials; Upper bound; Convolutional codes over rings; Galois rings; homogeneous weight; squared Euclidean free distance;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2007. ISIT 2007. IEEE International Symposium on
Conference_Location :
Nice
Print_ISBN :
978-1-4244-1397-3
Type :
conf
DOI :
10.1109/ISIT.2007.4557617
Filename :
4557617
Link To Document :
بازگشت