DocumentCode :
2033539
Title :
Parameter bounds under misspecified models
Author :
Richmond, Christ D. ; Horowitz, Larry L.
Author_Institution :
Lincoln Lab., Lexington, MA, USA
fYear :
2013
fDate :
3-6 Nov. 2013
Firstpage :
176
Lastpage :
180
Abstract :
A class of parameter bounds emerges as a consequence of the covariance inequality, i.e. Cauchy-Schwarz inequality for expectations. The expectation operator forms an inner product space. Flexibility in the choice of expectation integrand and measure for integration exists, however, to establish a class of parameter bounds under a general form of model misspecifi-cation, i.e. distribution mismatch. The Cramér-Rao bound (CRB) primarily, and secondarily the Barankin, Hammersley-Chapman-Robbins, and Bhattacharyya bounds under misspecification are considered. Huber´s sandwich covariance is easily established as the misspecified CRB, and a generalization of the Slepian-Bangs formula under misspecification is provided.
Keywords :
covariance analysis; estimation theory; integration; parameter estimation; statistical distributions; CRB; Cauchy-Schwarz inequality; Cramér-Rao bound; Huber sandwich covariance; Slepian-Bangs formula generalization; covariance inequality; distribution mismatch; expectation operator; misspecified models; model misspecification; parameter bounds; Correlation; Data models; Distributed databases; Maximum likelihood estimation; Parameter estimation; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signals, Systems and Computers, 2013 Asilomar Conference on
Conference_Location :
Pacific Grove, CA
Print_ISBN :
978-1-4799-2388-5
Type :
conf
DOI :
10.1109/ACSSC.2013.6810254
Filename :
6810254
Link To Document :
بازگشت