DocumentCode :
2034661
Title :
Image Denoising with Nonparametric Hidden Markov Trees
Author :
Kivinen, Jyri J. ; Sudderth, Erik B. ; Jordan, Michael I.
Author_Institution :
Helsinki Univ. of Technol., Espoo
Volume :
3
fYear :
2007
fDate :
Sept. 16 2007-Oct. 19 2007
Abstract :
We develop a hierarchical, nonparametric statistical model for wavelet representations of natural images. Extending previous work on Gaussian scale mixtures, wavelet coefficients are marginally distributed according to infinite, Dirichlet process mixtures. A hidden Markov tree is then used to couple the mixture assignments at neighboring nodes. Via a Monte Carlo learning algorithm, the resulting hierarchical Dirichlet process hidden Markov tree (HDP-HMT) model automatically adapts to the complexity of different images and wavelet bases. Image denoising results demonstrate the effectiveness of this learning process.
Keywords :
Monte Carlo methods; hidden Markov models; image denoising; trees (mathematics); wavelet transforms; Monte Carlo learning algorithm; image denoising; infinite Dirichlet process mixtures; nonparametric hidden Markov trees; statistical model; wavelet representation; Bayesian methods; Computer science; Frequency; Gaussian distribution; Hidden Markov models; Image denoising; Statistical distributions; Statistics; Wavelet coefficients; Wavelet transforms; hidden Markov trees; hierarchical Dirichlet processes; image denoising; nonparametric Bayesianmethods; wavelet transforms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 2007. ICIP 2007. IEEE International Conference on
Conference_Location :
San Antonio, TX
ISSN :
1522-4880
Print_ISBN :
978-1-4244-1437-6
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2007.4379261
Filename :
4379261
Link To Document :
بازگشت