Title :
Virtually augmenting hundreds of real pictures: An approach based on learning, retrieval, and tracking
Author :
Pilet, Julien ; Saito, Hideo
Author_Institution :
Keio Univ., Yokohama, Japan
Abstract :
Tracking is a major issue of virtual and augmented reality applications. Single object tracking on monocular video streams is fairly well understood. However, when it comes to multiple objects, existing methods lack scalability and can recognize only a limited number of objects. Thanks to recent progress in feature matching, state-of-the-art image retrieval techniques can deal with millions of images. However, these methods do not focus on real-time video processing and can not track retrieved objects. In this paper, we present a method that combines the speed and accuracy of tracking with the scalability of image retrieval. At the heart of our approach is a bi-layer clustering process that allows our system to index and retrieve objects based on tracks of features, thereby effectively summarizing the information available on multiple video frames. As a result, our system is able to track in real-time multiple objects, recognized with low delay from a database of more than 300 entries.
Keywords :
augmented reality; image matching; image retrieval; indexing; object detection; pattern clustering; tracking; video signal processing; augmented reality application; bi-layer clustering process; feature matching; image retrieval technique; monocular video stream; object indexing; object tracking; virtual reality application; Augmented reality; Cameras; Image retrieval; Information retrieval; Object detection; Quantization; Scalability; Streaming media; Target tracking; Vocabulary;
Conference_Titel :
Virtual Reality Conference (VR), 2010 IEEE
Conference_Location :
Waltham, MA
Print_ISBN :
978-1-4244-6237-7
Electronic_ISBN :
1087-8270
DOI :
10.1109/VR.2010.5444811