DocumentCode :
2035343
Title :
Algorithmic innovations in extended unbiased FIR filtering of nonlinear models
Author :
Granados-Cruz, Moises ; Shmaliy, Yuriy S. ; Ahn, Choon Ki ; Zhao, Shunyi
Author_Institution :
Department of Electronics Engineering, Universidad de Guanajuato, Salamanca, Gto., Mexico 36885
fYear :
2015
fDate :
28-30 July 2015
Firstpage :
1420
Lastpage :
1423
Abstract :
Two algorithms of extended unbiased FIR (EFIR) filtering are proposed for nonlinear state estimation. The first algorithm is basic and the second one employs the nonlinear-to-linear observation conversion obtained by the batch EFIR filter with minimum memory. Unlike the extended Kalman filter (EKF), both EFIR algorithms ignore the noise statistics and demonstrate better robustness, but require the optimal horizon. Applications are given for robot indoor self-localization utilizing radio frequency identification tags.
Keywords :
Accuracy; Estimation error; Finite impulse response filters; Hidden Markov models; Kalman filters; Noise; Robots; Extended FIR filtering; Extended Kalman filtering; Nonlinear estimation; Nonlinear-to-linear conversion;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Science and Information Conference (SAI), 2015
Conference_Location :
London, United Kingdom
Type :
conf
DOI :
10.1109/SAI.2015.7237332
Filename :
7237332
Link To Document :
بازگشت