DocumentCode :
2035588
Title :
Automated Learning of Workload Measures for Load Balancing on a Distributed System
Author :
Mehra, Pankaj ; Wah, Benjamin W.
Author_Institution :
University of Illinois, Urbana-Champaign, USA
Volume :
3
fYear :
1993
fDate :
16-20 Aug. 1993
Firstpage :
263
Lastpage :
270
Abstract :
Load-balancing systems use workload indices to dynamically schedule jobs. We present a novel method of automatically learning such indices. Our approach uses comparator neural networks, one per site, which learn to predict the relative speedup of an incoming job using only the resource-utilization patterns observed prior to the job´s arrival. Our load indices combine information from the key resources of contention: CPU, disk, network, and memory.
Keywords :
Coordinate measuring machines; Degradation; Intelligent networks; Load management; Neural networks; Parallel processing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Parallel Processing, 1993. ICPP 1993. International Conference on
Conference_Location :
Syracuse, NY, USA
ISSN :
0190-3918
Print_ISBN :
0-8493-8983-6
Type :
conf
DOI :
10.1109/ICPP.1993.47
Filename :
4134281
Link To Document :
بازگشت