DocumentCode :
2036999
Title :
General purpose representation and association machine part 1: Introduction and illustrations
Author :
Wei, Lei
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Central Florida, Orlando, FL, USA
fYear :
2012
fDate :
15-18 March 2012
Firstpage :
1
Lastpage :
5
Abstract :
Using lessons learned from error control coding, and multiple areas of life science, we propose a general purpose representation and association machine (GPRAM). GPRAM uses a versatile approach with hierarchical representation and association structures, each with different degrees of vagueness, over-completeness, and deliberate variation. GPRAM machines use vague measurements to do a quick and rough assessment on a task; then use approximated message-passing algorithms to improve assessment; and finally selects ways closer to a solution, eventually solving it. We illustrate concepts and structures using simple examples.
Keywords :
artificial intelligence; biocomputing; message passing; GPRAM; error control coding; general purpose representation and association machine; message-passing algorithm; task rough assessment; vague measurement; Complexity theory; Encoding; Error correction; Humans; Iterative decoding; Switches; Error Control Coding; General Purpose Systems; Intelligent Machine;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Southeastcon, 2012 Proceedings of IEEE
Conference_Location :
Orlando, FL
ISSN :
1091-0050
Print_ISBN :
978-1-4673-1374-2
Type :
conf
DOI :
10.1109/SECon.2012.6196968
Filename :
6196968
Link To Document :
بازگشت