DocumentCode :
2037200
Title :
General purpose representation and association machine part 2: Biological implications
Author :
Wei, Lei
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Central Florida, Orlando, FL, USA
fYear :
2012
fDate :
15-18 March 2012
Firstpage :
1
Lastpage :
5
Abstract :
Using lessons learned from error control coding, and multiple areas of life science, we propose a general purpose representation and association machine (GPRAM). In this part of paper, we illustrate our methodology, four principles, and our understanding of intelligence. We then introduce hierarchical structure and reasons to be vagueness, overcompleteness, and deliberate variation. After that, we show possible features and how to explain some visual illusions. Lastly, we illustrate a possible vague computational architecture to perform quick and rough estimation for general purpose.
Keywords :
artificial intelligence; bioinformatics; association machine; deliberate variation; error control coding; general purpose representation; intelligent machine; overcompleteness variation; vagueness variation; visual illusions; Computer architecture; Encoding; Humans; Iterative decoding; Temperature measurement; Visual systems; Visualization; formatting; insert; style; styling;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Southeastcon, 2012 Proceedings of IEEE
Conference_Location :
Orlando, FL
ISSN :
1091-0050
Print_ISBN :
978-1-4673-1374-2
Type :
conf
DOI :
10.1109/SECon.2012.6196976
Filename :
6196976
Link To Document :
بازگشت