Abstract :
We show that the asymptotic complexity of uniformly generated (expressible in first-order (FO) logic) prepositional tautologies for the nullstellensatz proof system (NS) as well as for polynomial calculus, (PC) has four distinct types of asymptotic behavior over fields of finite characteristic. More precisely, based on some highly non-trivial work by Krajicek, we show that for each prime p there exists a function l(n) G isin Omega(log(n)) for NS and l(n) G Omega (log(log(n)) for PC, such that the prepositional translation of any FO formula (that fails in all finite models), has degree proof complexity over fields of characteristic p, that behave in 4 mutually distinct ways: (i) The degree complexity is bound by a constant. (ii) The degree complexity is at least l(n) for all values of n. (iii) The degree complexity is at least l(n) except in a finite number of regular subsequences of infinite size, where the degree is constant. (iv) The degree complexity fluctuates in a very particular way with the degree complexity taking different constant values on an infinite number of regular subsequences each of infinite size. We leave it as an open question whether the classification remains valid for l[n) isin nOmega(1) or even for I (n) isin Omega(n). Finally, we show that for any non-empty proper subset A sube {(i), (ii), (iii), (iv)} the decision problem of whether a given input FO formula Psi has type belonging to A - is undecidable.
Keywords :
computational complexity; formal logic; theorem proving; asymptotic complexity; asymptotic nullstellensatz proof complexity; degree complexity; finite characteristics; finite model; first-order logic; nullstellensatz proof system; polynomial calculus proof complexity; prepositional translation; uniformly generated prepositional tautologies; Calculus; Character generation; Computer science; Knowledge representation; Logic; Polynomials; Testing; Algebraic proof complexity; Propositional proof complexity; predicate logic;