DocumentCode :
2039942
Title :
Probabilistic model building Genetic Network Programming using multiple probability vectors
Author :
Li, Xianneng ; Mabu, Shingo ; Mainali, Manoj K. ; Hirasawa, Kotaro
Author_Institution :
Grad. Sch. of Inf., Production & Syst., Waseda Univ., Kitakyushu, Japan
fYear :
2010
fDate :
21-24 Nov. 2010
Firstpage :
1398
Lastpage :
1403
Abstract :
As an extension of GA and GP, a new evolutionary algorithm named Genetic Network Programming (GNP) has been proposed. GNP uses the directed graph structure to represent its solutions, which can express the dynamic environment efficiently. The reusable nodes of GNP can construct compact structures, leading to a good performance in complex problems. In addition, a probabilistic model building GNP named GNP with Estimation of Distribution Algorithm (GNP-EDA) has been proposed to improve the evolution efficiency. GNP-EDA outperforms the conventional GNP by constructing a probabilistic model by estimating the probability distribution from the selected elite individuals of the previous generation. In this paper, a probabilistic model building GNP with multiple probability vectors (PMBGNPM) is proposed. In the proposed algorithm, multiple probability vectors are used in order to escape from premature convergence, and genetic operations like crossover and mutation are carried out to the probability vectors to maintain the diversities of the populations. The proposed algorithm is applied to the controller of autonomous robots and its performance is evaluated.
Keywords :
convergence; directed graphs; genetic algorithms; mobile robots; probabilistic logic; statistical distributions; autonomous robot controller; directed graph; distribution algorithm; evolutionary algorithm; genetic network programming; multiple probability vector; probabilistic model;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
TENCON 2010 - 2010 IEEE Region 10 Conference
Conference_Location :
Fukuoka
ISSN :
pending
Print_ISBN :
978-1-4244-6889-8
Type :
conf
DOI :
10.1109/TENCON.2010.5686113
Filename :
5686113
Link To Document :
بازگشت