DocumentCode
2041075
Title
A Greedy Performance Driven Algorithm for Decision Fusion Learning
Author
Joshi, Dhiraj ; Naphade, Milind ; Natsev, Apostol
Author_Institution
Pennsylvania State Univ., University Park
Volume
6
fYear
2007
fDate
Sept. 16 2007-Oct. 19 2007
Abstract
We propose a greedy performance driven algorithm for learning how to fuse across multiple classification and search systems. We assume a scenario when many such systems need to be fused to generate the final ranking. The algorithm is inspired from Ensemble Learning but takes that idea further for improving generalization capability. Fusion learning is applied to leverage text, visual and model based modalities for 2005 TRECVID query retrieval task. Experiments using the well established retrieval effectiveness measure of mean average precision reveal that our proposed algorithm improves over naive baseline (fusion with equal weights) as well as over Caruana´s original algorithm (NACHOS) by 36% and 46% respectively.
Keywords
image classification; image fusion; image retrieval; learning (artificial intelligence); decision fusion learning; greedy performance; image classification; query retrieval task; search system; Boosting; Computer science; Fuses; Fusion power generation; Information retrieval; Machine learning; Machine learning algorithms; Robustness; Search engines; Testing; TRECVID; hill climbing; late fusion; mean average precision;
fLanguage
English
Publisher
ieee
Conference_Titel
Image Processing, 2007. ICIP 2007. IEEE International Conference on
Conference_Location
San Antonio, TX
ISSN
1522-4880
Print_ISBN
978-1-4244-1437-6
Electronic_ISBN
1522-4880
Type
conf
DOI
10.1109/ICIP.2007.4379512
Filename
4379512
Link To Document