DocumentCode :
2041108
Title :
An approach to controller design of bilateral control with dimensional scaling
Author :
Kosugi, Takahiro ; Katsura, Seiichiro
Author_Institution :
Dept. of Syst. Design Eng., Keio Univ., Yokohama, Japan
fYear :
2012
fDate :
25-27 March 2012
Firstpage :
1
Lastpage :
6
Abstract :
In the field of teleoperations, visual or haptic information is utilized in order to obtain the situation at a remote side. Conventionally, various teleoperations have been constructed and are mainly based on visual information. However, tactile sensation which is important information when devices are in contact with environment is not able to be obtained with this approach. To tackle this problem, research on haptic transmission in the real-world by using a bilateral control has been attracting attention. For transmitting haptic information, a master-slave system should be constructed. As for the configuration, it does not always the same structure. From this point of view, teleoperation systems are classified into two types of systems. One is a fixed type system and the other is a mobile type system. Particularly, this paper focuses on the latter type system which has the characteristic that the synchronization must be attained between the different types of signals with regard to the dimension (e.g. between position and velocity) while the force transmission is also realized. In response to this requirement, a bilateral control with dimensional scaling on the basis of modal decomposition was proposed. However, the structures of controllers in the modal space have not been fully analyzed. Therefore, this paper clarifies the design procedure of the bilateral control with dimensional scaling taking into account the interference between the common and differential modes. Experimental results show the validity of the controller design.
Keywords :
haptic interfaces; mobile robots; telerobotics; bilateral control; common-differential modes interference; controller design; dimensional scaling; fixed type system; force transmission; haptic information; haptic transmission; master-slave system; mobile robot manipulations; mobile type system; modal decomposition; modal space; tactile sensation; teleoperations; visual information; Acceleration; Aerospace electronics; Haptic interfaces; Master-slave; Observers; Synchronization; Torque;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Advanced Motion Control (AMC), 2012 12th IEEE International Workshop on
Conference_Location :
Sarajevo
Print_ISBN :
978-1-4577-1072-8
Electronic_ISBN :
978-1-4577-1071-1
Type :
conf
DOI :
10.1109/AMC.2012.6197146
Filename :
6197146
Link To Document :
بازگشت