• DocumentCode
    2045376
  • Title

    Online Video Foreground Segmentation using General Gaussian Mixture Modeling

  • Author

    Allili, Mohand Said ; Bouguila, N. ; Ziou, Djemel

  • Author_Institution
    DI, Univ. of Sherbrooke, Sherbrooke, QC, Canada
  • fYear
    2007
  • fDate
    24-27 Nov. 2007
  • Firstpage
    959
  • Lastpage
    962
  • Abstract
    In this paper, we propose a robust video foreground modeling by using a finite mixture model of general Gaussian distributions (GGD). The model has a flexibility to model the video background in the presence of sudden illumination changes and shadows, allowing for an efficient foreground segmentation. In a first part of the present work, we propose a derivation of the online estimation of the parameters of the mixture of GGDs and we propose a Bayesian approach for the selection of the number of classes. In a second part, we show experiments of video foreground segmentation demonstrating the performance of the proposed model.
  • Keywords
    Bayes methods; Gaussian distribution; image segmentation; parameter estimation; video signal processing; Bayesian approach; finite mixture model; general Gaussian distributions; general Gaussian mixture modeling; online video foreground segmentation; parameters estimation; video background; Bayesian methods; Gaussian distribution; Image segmentation; Lighting; Noise robustness; Noise shaping; Parameter estimation; Shape; Video signal processing; Videoconference; MML; Mixture of General Gaussians (MoGG); video foreground segmentation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Signal Processing and Communications, 2007. ICSPC 2007. IEEE International Conference on
  • Conference_Location
    Dubai
  • Print_ISBN
    978-1-4244-1235-8
  • Electronic_ISBN
    978-1-4244-1236-5
  • Type

    conf

  • DOI
    10.1109/ICSPC.2007.4728480
  • Filename
    4728480