Title :
Complexity of decoding Gabidulin codes
Author :
Gadouleau, Maximilien ; Yan, Zhiyuan
Author_Institution :
Dept. of Electr. & Comput. Eng., Lehigh Univ., Bethlehem, PA
Abstract :
In this paper, we analyze the complexity of decoding Gabidulin codes using the analogs in rank metric codes of the extended Euclidean algorithm or the Berlekamp-Massey algorithm. We show that a subclass of Gabidulin codes reduces the complexity and the memory requirements of the decoding algorithm. We also simplify an existing algorithm for finding roots of linearized polynomials for decoding Gabidulin codes. Finally we analyze and compare the asymptotic complexities of different decoding algorithms for Gabidulin codes.
Keywords :
codes; decoding; Berlekamp-Massey algorithm; Gabidulin codes; decoding complexity; extended Euclidean algorithm; linearized polynomials; rank metric codes; Algebra; Algorithm design and analysis; Decoding; Distributed computing; Error correction codes; Galois fields; Network coding; Polynomials; Public key cryptography; Reed-Solomon codes;
Conference_Titel :
Information Sciences and Systems, 2008. CISS 2008. 42nd Annual Conference on
Conference_Location :
Princeton, NJ
Print_ISBN :
978-1-4244-2246-3
Electronic_ISBN :
978-1-4244-2247-0
DOI :
10.1109/CISS.2008.4558679