DocumentCode :
2047599
Title :
Z-module reasoning and proving the commutativity of rings of exponent n/spl ges/2
Author :
Sawyer, Blackwell ; Esterline, Albert C.
Author_Institution :
Dept. of Comput. Sci., North Carolina A&T State Univ., Greensboro, NC, USA
fYear :
2000
fDate :
9-9 April 2000
Firstpage :
322
Lastpage :
325
Abstract :
We address a well-known problem in the field of automated reasoning that has been used to test the effectiveness of reasoning systems. The problem is the following: for a given integer e greater than two, if a ring R has exponent e, then must R be commutative?.
Keywords :
group theory; inference mechanisms; Z-module reasoning; abelian group; addition; automated reasoning; exponent; multiplication; reasoning systems; rings commutativity; Additives; Automatic testing; Computer languages; Computer science; Equations; Laboratories; Modules (abstract algebra); Polynomials; Prototypes; System testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Southeastcon 2000. Proceedings of the IEEE
Conference_Location :
Nashville, TN, USA
Print_ISBN :
0-7803-6312-4
Type :
conf
DOI :
10.1109/SECON.2000.845585
Filename :
845585
Link To Document :
بازگشت