DocumentCode :
2048960
Title :
Fuzzy metaqueries for guiding the discovery process in KDD
Author :
Cerquides, Jesus ; De Màntaras, Ramon López
Author_Institution :
Artificial Intelligence Res. Inst., CSIC, Barcelona, Spain
Volume :
3
fYear :
1997
fDate :
1-5 Jul 1997
Firstpage :
1555
Abstract :
This paper introduces the concept of fuzzy metaqueries and describes a framework for knowledge discovery in database (KDD) that has fuzzy metaqueries as its base. Fuzzy metaqueries are second order like fuzzy rules, very useful for the integration of inductive learning, deductive verification, human intuition and uncertainty handling
Keywords :
deductive databases; fuzzy logic; knowledge acquisition; knowledge based systems; query processing; uncertainty handling; database query; fuzzy logic; fuzzy metaquery; fuzzy rules; knowledge acquisition; knowledge discovery; uncertainty handling; Artificial intelligence; Character generation; Councils; Data mining; Databases; Fuzzy logic; Fuzzy systems; Humans; Learning; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Systems, 1997., Proceedings of the Sixth IEEE International Conference on
Conference_Location :
Barcelona
Print_ISBN :
0-7803-3796-4
Type :
conf
DOI :
10.1109/FUZZY.1997.619773
Filename :
619773
Link To Document :
بازگشت