DocumentCode :
2049553
Title :
Adaptive output feedback control of uncertain multi-input multi-output systems using single hidden layer neural networks
Author :
Hovakimyan, Naira ; Calise, Anthony J.
Author_Institution :
Sch. of Aerosp. Eng., Georgia Inst. of Technol., Atlanta, GA, USA
Volume :
2
fYear :
2002
fDate :
2002
Firstpage :
1555
Abstract :
We consider adaptive output feedback control of uncertain multi-input multi-output nonlinear systems, in which both the dynamics and the dimension of the regulated plant may be unknown, but knowledge of vector relative degree is required. Given smooth reference trajectories, the problem is to design controllers that force the system measurements to track them with bounded errors. We propose a linear observer for the output tracking error vector and a single hidden layer (SHL) neural network (NN) to cancel the modelling errors. Ultimate boundedness of the error signals is shown through Lyapunov´s direct method. Simulations of a fourth order two-input two-output nonlinear system illustrate the theoretical results.
Keywords :
Lyapunov methods; MIMO systems; adaptive control; control system synthesis; feedback; multilayer perceptrons; multivariable control systems; neurocontrollers; nonlinear control systems; uncertain systems; Lyapunov direct method; SHL NN; adaptive output feedback control; bounded errors; error signal ultimate boundedness; modelling error cancellation; output tracking error vector; single hidden layer neural networks; smooth reference trajectories; uncertain MIMO nonlinear systems; Adaptive control; Adaptive systems; Control systems; Force control; Force measurement; Neural networks; Nonlinear systems; Output feedback; Programmable control; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2002. Proceedings of the 2002
ISSN :
0743-1619
Print_ISBN :
0-7803-7298-0
Type :
conf
DOI :
10.1109/ACC.2002.1023243
Filename :
1023243
Link To Document :
بازگشت