DocumentCode :
2050210
Title :
An Intuitionistic Logic that Proves Markov´s Principle
Author :
Herbelin, Hugo
Author_Institution :
PPS, INRIA, Paris, France
fYear :
2010
fDate :
11-14 July 2010
Firstpage :
50
Lastpage :
56
Abstract :
We design an intuitionistic predicate logic that supports a limited amount of classical reasoning, just enough to prove a variant of Markov´s principle suited for predicate logic. At the computational level, the extraction of an existential witness out of a proof of its double negation is done by using a form of statically-bound exception mechanism, what can be seen as a direct-style variant of Friedman´s A-translation.
Keywords :
Markov processes; formal logic; Friedman A-translation; Markov principle; intuitionistic predicate logic; statically-bound exception mechanism; Calculus; Cognition; Construction industry; Context; Grammar; Inspection; Markov processes; Markov´s principle; exceptions; intuitionistic logic; proof-as-program correspondence;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Logic in Computer Science (LICS), 2010 25th Annual IEEE Symposium on
Conference_Location :
Edinburgh
ISSN :
1043-6871
Print_ISBN :
978-1-4244-7588-9
Electronic_ISBN :
1043-6871
Type :
conf
DOI :
10.1109/LICS.2010.49
Filename :
5571063
Link To Document :
بازگشت