DocumentCode :
2052555
Title :
Comparison of Low Complexity Fast Iterative Decoding Techniques for Convolutional Self-Doubly-Orthogonal Codes
Author :
He, Yu-Cheng ; Haccoun, David ; Cardinal, Christian
Author_Institution :
Dept. of Electr. Eng., Ecole Polytech. de Montreal, Montreal, QC
fYear :
2009
fDate :
26-29 April 2009
Firstpage :
1
Lastpage :
5
Abstract :
A class of orthogonal convolutional codes featuring self-doubly-orthogonal properties is analyzed under iterative decoding techniques. The self-doubly-orthogonal properties of these codes allow them to approach the asymptotic error performance using a low complexity iterative threshold decoding algorithm. It can be shown that convolutional self-doubly-orthogonal codes are also suited for iterative belief propagation (BP) decoding algorithm with typically five iterations to approach the asymptotic error performance. At a substantially reduced complexity, iterative threshold decoding requires the same number of iterations as iterative BP decoding to achieve practically the asymptotic error performance at moderate signal-to-noise ratios.
Keywords :
convolutional codes; iterative decoding; orthogonal codes; BP decoding algorithm; asymptotic error performance; belief propagation; convolutional self-doubly-orthogonal code; low complexity fast iterative decoding technique; AWGN; Belief propagation; Convolution; Convolutional codes; Delay; Helium; Iterative algorithms; Iterative decoding; Iterative methods; Signal to noise ratio;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Vehicular Technology Conference, 2009. VTC Spring 2009. IEEE 69th
Conference_Location :
Barcelona
ISSN :
1550-2252
Print_ISBN :
978-1-4244-2517-4
Electronic_ISBN :
1550-2252
Type :
conf
DOI :
10.1109/VETECS.2009.5073452
Filename :
5073452
Link To Document :
بازگشت