DocumentCode :
2053217
Title :
ML estimate and CRLB of Covariance Matrix for Complex Elliptically Symmetric distribution
Author :
Greco, Maria ; Gini, F. ; Wiesel, Ami
Author_Institution :
Dipt. di Ing. dell´Inf., Univ. of Pisa, Pisa, Italy
fYear :
2013
fDate :
9-13 Sept. 2013
Firstpage :
1
Lastpage :
5
Abstract :
This paper derives the “constrained” maximum likelihood (ML) estimators and the Cramér-Rao Lower Bounds (CRLB) for the scatter matrix of Complex Elliptically Symmetric distributions and compares them in the particular cases of complex Gaussian, Generalized Gaussian (GG) and t-distributed observation vectors. Numerical results confirm the goodness of the ML estimators and the advantage of a constraint on the matrix trace for small data size.
Keywords :
Gaussian processes; matrix algebra; maximum likelihood estimation; CRLB; Cramer-Rao lower bounds; ML estimation; complex Gaussian; complex elliptically symmetric distribution; constrained maximum likelihood estimator; covariance matrix; generalized Gaussian; scatter matrix; t-distributed observation vectors; Abstracts; Covariance matrices; Equations; Indexes; Maximum likelihood estimation; Sonar; Vectors; CRLB; Matrix estimation; complex elliptically distribution;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing Conference (EUSIPCO), 2013 Proceedings of the 21st European
Conference_Location :
Marrakech
Type :
conf
Filename :
6811434
Link To Document :
بازگشت