DocumentCode :
2054151
Title :
Bounds on the minimum distances of a class of q-ary images of qm-ary irreducible cyclic codes
Author :
Woungang, Isaac ; Sadeghian, Alireza ; Melek, William W.
Author_Institution :
Sch. of Comput. Sci., Ryerson Univ., Toronto, Ont., Canada
fYear :
2004
fDate :
27 June-2 July 2004
Firstpage :
185
Abstract :
Let V=(n, k:) be an irreducible cyclic code over Fqm, the finite field of qm elements. Let α_ be a basis of Fqm over Fq. Under the simplifying assumption (n,q)=1, it is shown that dα_(V), the q-ary image of V with respect to α, is decomposable into the direct sum of a fixed number of irreducible quasicyclic codes. This characterization allow us to obtain a lower bound on the minimum distance of dα_(V) by determining a lower bound on the number of not- blocks in a typical codeword of dα_(V), for four specific subclasses of codes.
Keywords :
cyclic codes; codeword; finite field element; irreducible quasicyclic code; q-ary image; Computer science; Galois fields; Polynomials;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2004. ISIT 2004. Proceedings. International Symposium on
Print_ISBN :
0-7803-8280-3
Type :
conf
DOI :
10.1109/ISIT.2004.1365219
Filename :
1365219
Link To Document :
بازگشت