• DocumentCode
    2054424
  • Title

    Exact minimax strategies for predictive density estimation, data compression and model selection

  • Author

    Liang, Feng ; Barron, Andrew R.

  • Author_Institution
    Inst. of Stat. & Decision Sci., Duke Univ., Durham, NC, USA
  • fYear
    2002
  • fDate
    2002
  • Firstpage
    149
  • Abstract
    The Bayes procedure with uniform prior on location (and log-scale) parameters is shown to be exact minimax optimal for location and scale families in problems of universal data compression, predictive density estimation and model selection.
  • Keywords
    Bayes methods; data compression; information theory; minimax techniques; modelling; parameter estimation; prediction theory; Bayes procedure; exact minimax strategies; linear regression model; location parameters; model selection; predictive density estimation; universal data compression; Data compression; Linear regression; Minimax techniques; Predictive models; Q measurement; Redundancy; Statistical analysis; Statistical distributions; Statistics; Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Theory, 2002. Proceedings. 2002 IEEE International Symposium on
  • Print_ISBN
    0-7803-7501-7
  • Type

    conf

  • DOI
    10.1109/ISIT.2002.1023421
  • Filename
    1023421