DocumentCode
20566
Title
Retrieving Smith-Waterman Alignments with Optimizations for Megabase Biological Sequences Using GPU
Author
de O.Sandes, Edans Flavius ; de Melo, Alba Cristina M.A.
Author_Institution
University of Brasilia (UnB), Brazil
Volume
24
Issue
5
fYear
2013
fDate
May-13
Firstpage
1009
Lastpage
1021
Abstract
In Genome Projects, biological sequences are aligned thousands of times, in a daily basis. The Smith-Waterman algorithm is able to retrieve the optimal local alignment with quadratic time and space complexity. So far, aligning huge sequences, such as whole chromosomes, with the Smith-Waterman algorithm has been regarded as unfeasible, due to huge computing and memory requirements. However, high-performance computing platforms such as GPUs are making it possible to obtain the optimal result for huge sequences in reasonable time. In this paper, we propose and evaluate CUDAlign 2.1, a parallel algorithm that uses GPU to align huge sequences, executing the Smith-Waterman algorithm combined with Myers-Miller, with linear space complexity. In order to achieve that, we propose optimizations which are able to reduce significantly the amount of data processed, while enforcing full parallelism most of the time. Using the NVIDIA GTX 560 Ti board and comparing real DNA sequences that range from 162 KBP (Thousand Base Pairs) to 59 MBP (Million Base Pairs), we show that CUDAlign 2.1 is scalable. Also, we show that CUDAlign 2.1 is able to produce the optimal alignment between the chimpanzee chromosome 22 (33 MBP) and the human chromosome 21 (47 MBP) in 8.4 hours and the optimal alignment between the chimpanzee chromosome Y (24 MBP) and the human chromosome Y (59 MBP) in 13.1 hours.
Keywords
Bioinformatics; Biological cells; DNA; Graphics processing unit; Instruction sets; Optimization; Bioinformatics; GPU; parallel algorithms; sequence alignment;
fLanguage
English
Journal_Title
Parallel and Distributed Systems, IEEE Transactions on
Publisher
ieee
ISSN
1045-9219
Type
jour
DOI
10.1109/TPDS.2012.194
Filename
6226380
Link To Document