DocumentCode :
2057450
Title :
On polylogarithmic decoding complexity for reed-muller codes
Author :
Dumer, I.
Author_Institution :
California Univ., Riverside, CA
fYear :
2004
fDate :
June 27 2004-July 2 2004
Firstpage :
327
Lastpage :
327
Abstract :
For Reed-Muller (RM) codes of length n and distance d, a recursive decoding algorithm is designed that has complexity of order nlogn for any fixed rate R, and corrects most error patterns of weight up to (dlnd)/2 on the binary symmetric channels (BSC) and up to (2dlnd)/pi on the AWGN channels. For long RM codes of fixed order r, a vanishing decoding error probability and polylogarithmic decoding complexity of order (logn)r+1 are obtained on the BSC given any transition probability p that is bounded away from 1/2
Keywords :
AWGN channels; Reed-Muller codes; error statistics; recursive estimation; AWGN channels; Reed-Muller codes; binary symmetric channels; polylogarithmic decoding complexity; recursive decoding algorithm; transition probability; vanishing decoding error probability; AWGN channels; Additive noise; Algorithm design and analysis; Decoding; Error correction; Error correction codes; Error probability; Memoryless systems; Probability density function; Reliability theory;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2004. ISIT 2004. Proceedings. International Symposium on
Conference_Location :
Chicago, IL
Print_ISBN :
0-7803-8280-3
Type :
conf
DOI :
10.1109/ISIT.2004.1365364
Filename :
1365364
Link To Document :
بازگشت