Title :
On quantum MDS codes
Author :
Rötteler, Martin ; Grassl, Markus ; Beth, Thomas
Author_Institution :
Inst. for Quantum Comput., Waterloo Univ., Ont.
Abstract :
We construct maximum distance separable quantum error-correcting codes. The codes are defined over q-dimensional quantum systems, where q is any prime power. The construction yields quantum MDS codes of length up to q+1 for all possible dimensions and some quantum MDS codes of length up to q2+1. In particular, those families contain codes [[6,2,3]]p and [[7,3,3]]p for pges3 (cf. [K. Feng (2002)])
Keywords :
error correction codes; quantum communication; code length; maximum distance separable quantum error-correcting code; quantum MDS code; Cascading style sheets; Error correction codes; Quantum computing; Quantum mechanics; Reed-Solomon codes;
Conference_Titel :
Information Theory, 2004. ISIT 2004. Proceedings. International Symposium on
Conference_Location :
Chicago, IL
Print_ISBN :
0-7803-8280-3
DOI :
10.1109/ISIT.2004.1365393