DocumentCode :
2058516
Title :
Gauss´ principle and the dynamics of redundant and constrained manipulators
Author :
Bruyninckx, Herman ; Khatib, Oussama
Author_Institution :
Dept. of Mech. Eng., Katholieke Univ., Leuven, Belgium
Volume :
3
fYear :
2000
fDate :
2000
Firstpage :
2563
Abstract :
This paper uses Gauss´ principle of least constraint to derive the “natural” dynamic equations for redundant manipulators. This approach is the fastest way to the result that the operational space inertia matrix of the manipulator is the natural weighting matrix for the projection used in solving the redundancy problem. Force-controlled robots form a special case of redundant robots, such that the results can be applied straightforwardly to solve the long-standing problem of the “non-invariance” of the selection matrices in the hybrid force/position control paradigm
Keywords :
force control; manipulator dynamics; matrix algebra; minimisation; position control; redundancy; redundant manipulators; Gauss principle; constrained manipulators; dynamics; force control; inertia matrix; minimisation; position control; redundancy; redundant manipulators; weighting matrix; Differential algebraic equations; Energy resolution; Gaussian processes; Jacobian matrices; Kinematics; Kinetic energy; Manipulator dynamics; Mechanical engineering; Orbital robotics; Robots;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Robotics and Automation, 2000. Proceedings. ICRA '00. IEEE International Conference on
Conference_Location :
San Francisco, CA
ISSN :
1050-4729
Print_ISBN :
0-7803-5886-4
Type :
conf
DOI :
10.1109/ROBOT.2000.846414
Filename :
846414
Link To Document :
بازگشت