DocumentCode :
2059791
Title :
Comparison of Gaussian mixture reductions for probabilistic studies in power systems
Author :
Valverde, Gustavo ; Tortos, J.Q. ; Terzija, Vladimir
Author_Institution :
Sch. of Electr. & Electron. Eng., Univ. of Manchester, Manchester, UK
fYear :
2012
fDate :
22-26 July 2012
Firstpage :
1
Lastpage :
7
Abstract :
This paper presents the comparison of three pair-merging methods to reduce the number of Gaussian mixture components used to model non-Gaussian Probabilistic Density Function (PDF) of random power system variables such as power demands, wind power outputs or other intermittent power sources. It also introduces a fine-tuning algorithm to improve the solution of the pair-merging methods to better approximate the original Gaussian mixture. A Gaussian mixture distribution with seven components is used to validate and demonstrate the algorithms.
Keywords :
Gaussian distribution; demand side management; load flow; power systems; random processes; wind power; Gaussian mixture components; Gaussian mixture distribution; Gaussian mixture reductions; fine-tuning algorithm; intermittent power sources; nonGaussian PDF model; nonGaussian probabilistic density function model; pair-merging methods; power demands; random power system variables; wind power outputs; Approximation algorithms; Approximation methods; Load modeling; Power demand; Probabilistic logic; Random variables; Upper bound; Gaussian mixture model; probabilistic density function; probabilistic power flow; wind power;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Power and Energy Society General Meeting, 2012 IEEE
Conference_Location :
San Diego, CA
ISSN :
1944-9925
Print_ISBN :
978-1-4673-2727-5
Electronic_ISBN :
1944-9925
Type :
conf
DOI :
10.1109/PESGM.2012.6345346
Filename :
6345346
Link To Document :
بازگشت