DocumentCode :
2062163
Title :
On the thinnest coverings of ellipsoids
Author :
Dumer, I. ; Pinsker, M.S. ; Prelov, V.V.
Author_Institution :
Coll. of Eng., California Univ., Riverside, CA, USA
fYear :
2004
fDate :
27 June-2 July 2004
Firstpage :
521
Abstract :
The thinnest coverings of ellipsoids are studied in the Euclidean spaces of an arbitrary dimension n. Given any ellipsoid, we obtain a tight asymptotic bound on the minimum size of its covering by the balls of radius ε. This bound holds for all but the most oblong ellipsoids. The results can be applied to vector quantization when different data streams are bundled together in one block.
Keywords :
entropy; vector quantisation; Euclidean space; arbitrary dimension; asymptotic bound; data stream; thin ellipsoid covering; vector quantization; Educational institutions; Ellipsoids; Entropy; Polynomials; Vector quantization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2004. ISIT 2004. Proceedings. International Symposium on
Print_ISBN :
0-7803-8280-3
Type :
conf
DOI :
10.1109/ISIT.2004.1365560
Filename :
1365560
Link To Document :
بازگشت